规划控制

规划控制

自动驾驶发展现状及热点研究——规划控制

知识讲堂奇点汽车 发表了文章 • 0 个评论 • 559 次浏览 • 2019-04-01 13:41 • 来自相关话题

对自动驾驶而言,传感器、感知、地图定位和规划控制是目前研究的热点,本文奇点汽车美研中心首席科学家兼总裁黄浴博士从多个方面综述了目前自动驾驶的技术水平以及不同板块的重要性。 规划控制 下面该是规划控制( ...查看全部
对自动驾驶而言,传感器、感知、地图定位和规划控制是目前研究的热点,本文奇点汽车美研中心首席科学家兼总裁黄浴博士从多个方面综述了目前自动驾驶的技术水平以及不同板块的重要性。

规划控制

下面该是规划控制(包含预测和决策)。

规划分三个层面,路径规划(任务规划),行为规划和运动规划。最后一个运动规划,和后面的控制模块捆在一起,基本上L2-L4都通用了,除非软硬件联合开发,L2和L4用的运动规划(经典的有RRT,Lattice planner)及控制(PID,MPC之类)没啥变化。路径规划,就是基于道路网络确定地图上A点到B点的路径,这个以前导航地图也是要做这个任务。那么,剩下一个最新的问题就是行为规划了。

行为规划需要定义一个行为类型集,类似多媒体领域采用的ontology,领域知识的描述。而行为规划的过程,变成了一个有限状态机的决策过程,需要各种约束求解最优解。这里对周围运动障碍物(车辆/行人)的行为也有一个动机理解和轨迹预测的任务。上面谈到的,感知模块对周围车辆行人的行为理解,就会在这里扮演一个重要的角色。

深度学习在这里有价值了。行为模型的学习过程需要大量的驾驶数据,包括感知和定位的输出,路径规划和车辆的运动状态作为输入,最终的车辆行驶的控制信号(方向盘,油门,刹车)作为输出,那么这就是一个E2E的行为规划+运动规划+控制的模型;如果把车辆轨迹作为输出,那么这个E2E就不包括控制。

如果把传感器/GPS/IMU/HD Map和路径规划作为输入,那么这个E2E就是前端加上感知的模型,这就变成特斯拉想做的software 2.0,不过感知太复杂了,不好办。还是觉得把感知和定位的输出作为输入吧,这样放心:)。

这里不得不提到自动驾驶的仿真模拟系统,按我看,这种规划控制的行为模型学习,最适合在模拟仿真环境做测试。Waymo在Carcraft仿真系统中测试左拐弯行为时候,会加上各种变化来测试性能,称子为“fuzzing"。

这里给大家推荐两篇重要论文做参考:
1 “A Scenario-Adaptive Driving Behavior Prediction Approach to Urban Autonomous Driving”
2 “ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst”

第一篇是中科大的论文,个人认为非常适合大家了解百度刚刚发布的Apollo 3.5的行为规划模型。这篇文章我一年前就读了,不是深度学习的方法。这里贴几个截图:

25.jpg

26.jpg

27.jpg

28.jpg






第二篇论文是Waymo最近发的research工作,是深度学习方法,完全依赖其强大的感知模块输入,还有1000万英里的驾驶数据,强烈推荐。附上几个截图:

29.jpg

30.jpg

31.jpg

32.jpg

自动驾驶发展现状及热点研究——规划控制

知识讲堂奇点汽车 发表了文章 • 0 个评论 • 559 次浏览 • 2019-04-01 13:41 • 来自相关话题

对自动驾驶而言,传感器、感知、地图定位和规划控制是目前研究的热点,本文奇点汽车美研中心首席科学家兼总裁黄浴博士从多个方面综述了目前自动驾驶的技术水平以及不同板块的重要性。 规划控制 下面该是规划控制( ...查看全部
对自动驾驶而言,传感器、感知、地图定位和规划控制是目前研究的热点,本文奇点汽车美研中心首席科学家兼总裁黄浴博士从多个方面综述了目前自动驾驶的技术水平以及不同板块的重要性。

规划控制

下面该是规划控制(包含预测和决策)。

规划分三个层面,路径规划(任务规划),行为规划和运动规划。最后一个运动规划,和后面的控制模块捆在一起,基本上L2-L4都通用了,除非软硬件联合开发,L2和L4用的运动规划(经典的有RRT,Lattice planner)及控制(PID,MPC之类)没啥变化。路径规划,就是基于道路网络确定地图上A点到B点的路径,这个以前导航地图也是要做这个任务。那么,剩下一个最新的问题就是行为规划了。

行为规划需要定义一个行为类型集,类似多媒体领域采用的ontology,领域知识的描述。而行为规划的过程,变成了一个有限状态机的决策过程,需要各种约束求解最优解。这里对周围运动障碍物(车辆/行人)的行为也有一个动机理解和轨迹预测的任务。上面谈到的,感知模块对周围车辆行人的行为理解,就会在这里扮演一个重要的角色。

深度学习在这里有价值了。行为模型的学习过程需要大量的驾驶数据,包括感知和定位的输出,路径规划和车辆的运动状态作为输入,最终的车辆行驶的控制信号(方向盘,油门,刹车)作为输出,那么这就是一个E2E的行为规划+运动规划+控制的模型;如果把车辆轨迹作为输出,那么这个E2E就不包括控制。

如果把传感器/GPS/IMU/HD Map和路径规划作为输入,那么这个E2E就是前端加上感知的模型,这就变成特斯拉想做的software 2.0,不过感知太复杂了,不好办。还是觉得把感知和定位的输出作为输入吧,这样放心:)。

这里不得不提到自动驾驶的仿真模拟系统,按我看,这种规划控制的行为模型学习,最适合在模拟仿真环境做测试。Waymo在Carcraft仿真系统中测试左拐弯行为时候,会加上各种变化来测试性能,称子为“fuzzing"。

这里给大家推荐两篇重要论文做参考:
1 “A Scenario-Adaptive Driving Behavior Prediction Approach to Urban Autonomous Driving”
2 “ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst”

第一篇是中科大的论文,个人认为非常适合大家了解百度刚刚发布的Apollo 3.5的行为规划模型。这篇文章我一年前就读了,不是深度学习的方法。这里贴几个截图:

25.jpg

26.jpg

27.jpg

28.jpg






第二篇论文是Waymo最近发的research工作,是深度学习方法,完全依赖其强大的感知模块输入,还有1000万英里的驾驶数据,强烈推荐。附上几个截图:

29.jpg

30.jpg

31.jpg

32.jpg