车辆横向动态

车辆横向动态

自动驾驶四轮独立驱动电动汽车的自适应分层轨迹跟踪控制方法(七)

知识讲堂自动驾驶小能手 发表了文章 • 0 个评论 • 446 次浏览 • 2019-08-01 12:46 • 来自相关话题

1.png2.png3.png4.png5.png

B、实验结果

所提出的轨迹跟踪控制系统在一辆原型自动驾驶轮内电机4WID电动车辆上实施并成功测试,原型车如图17所示。

选择四个永磁无刷直流(BLDC)电动机作为轮内电动机。角位移传感器用于测量车轮的转向角。横摆率,纵向速度和滑移角等车辆状态量由GPS / INS导航系统精确测量和估算[28],[29]。原型车配备实时视觉系统,由两个CCD摄像头和一个基于PC的中央处理系统组成,视觉系统的处理时间小于每帧20ms。值得一提的是,视觉系统可以实时检测预定的跟踪轨迹并精确确定横向误差和角度误差[15]。道路附着力估计器的带宽为25Hz [27],控制器的采样间隔限制为40ms。图18示出了在实验测试中使用的参考轨迹。相应的初始横向误差和偏航误差分别设定为0.1m和2deg,纵向速度假设为25km/ h。

图19显示了横向误差的实验结果,可以看出所提出的控制方案和LQR控制方案的稳态横向误差分别限制在±0.2m和±0.4m之内,最大横向误差发生在曲率最大的路段。图20示出了角度误差的实验结果,应注意所提出的控制方案和LQR控制方案的稳态角度误差分别在±1°和±2°范围内。图19和图20表明,所提出的AFSMC控制器可以确保自动驾驶车辆实时跟踪参考轨迹,并且与LQR控制器相比,它产生更高的精度和更低的超调量和振荡。图21和图22示出了滑移角和横摆率的响应结果,它们表明所提出的控制器和LQR控制器可以分别将滑移角和横摆率限制在可接受的范围内。然而,所提出的控制系统显着提高了响应精度。图23示出了比较的前转向角,可以看出所提出的控制方案的控制输入比LQR控制器更平滑。图24显示了所提出的控制方法的外部横摆力矩。可以看出,所提出的控制方案可以实时产生外部横摆力矩,这可以增强自动驾驶车辆的横向稳定性。

5.结论

本文提出了一种新的四轮独立驱动自动驾驶汽车的自适应分层轨迹跟踪控制方案。首先,提出了一种基于LMI的自适应滑模高级控制算法,用于确定自动驾驶车辆的前转向和外横摆力矩矢量。由于参数不确定性和外部扰动通常是不可测量的,因此通过模糊控制系统估算所提出的高级控制律的不确定项和控制增益,并引入自适应模糊边界层。然后,设计伪逆控制分配策略以将期望的外部横摆力矩动态地分配到冗余轮胎致动器中。此外,仿真和实验结果表明,所提出的控制方案可以在不同的驱动条件下实现良好的跟踪性能。

参考文献

[1]  J. Guo, K. Li, and Y. Luo,“Coordinated control of autonomous four wheel drive electric vehiclesforplatooning and trajectory tracking using a hierarchical architecture,” J. Dyn.Syst. Meas. Control, vol. 137, no. 10, p. 101001, 2015.
[2] S. Thrun, M. Montemerlo, andH. Dahlkamp, “Stanley: The robot that won the DARPA grand challenge,” J. FieldRobot., vol. 23, no. 9, pp. 661–692,2006.
[3]  E. Kayacan, E. Kayacan, H.Ramon, O. Kaynak, and W.Saeys, “Towards agrobots: Trajectory control ofanautonomous tractor using type-2 fuzzy logic controllers,” IEEE/ASME Trans.Mechatronics, vol. 20, no. 1, pp. 287–298, Feb. 2015.
[4]  R. Marino, S. Scalzi, and M.Netto, “Nested PID steering control for lane keeping in autonomous vehicles,”Control. Eng. Pract., vol. 19, no. 12, pp. 1459–1467, 2011.
[5]  J. Guo, P. Hu, L. Li, and R.Wang, “Design of automatic steering controller for trajectory trackingofunmanned vehicles using genetic algorithms,” IEEETrans. Veh. Technol., vol.61, no. 7, pp. 2913–2924,Sep. 2012.
[6]  J. Huang and M. Tomizuka, “LTVcontroller design for vehicle lateral control under fault in rearsensors,”IEEE/ASME Trans. Mechatronics, vol. 10, no. 1,pp. 1–7, Feb. 2005.
[7]  H.-S. Tan, F. Bu, and B.Bougler, “A real-world application of laneguidance technologies—Automatedsnowblower,” IEEE Trans. Intell.Transp. Syst., vol. 8, no. 3, pp. 538–548,Sep. 2007.
[8]  P. Falcone, F. Borrelli, J.Asgari, H. E. Tseng, and D.Hrovat, “Predictive active steering controlforautonomous vehicle systems,” IEEE Trans. Control Syst.Technol., vol. 15, no.3, pp. 566–580, May 2007.
[9]  N. M. Enache, S. Mammar, M.Netto, and B. Lusetti, “Driver steering assistance for lane-departure avoidancebased onhybrid automata and composite Lyapunov function,” IEEETrans. Intell.Transp. Syst., vol. 11, no. 1, pp. 28–39,Mar. 2010.
[10] L. Liang, J. Gang, C. Jie, Z. Hongjun, C. Dongpu, and S.Jian, “Anovel vehicle dynamics stability controlalgorithm based on the hierarchicalstrategy with constrain of nonlinear tyreforces,” Int. J. Veh. Syst. Dyn.,vol. 53, no. 8, pp.1093–1116, 2015.
[11] C. Geng, L. Mostefai, M. Denai, and Y. Hori, “Direct yaw-momentcontrol of an in-wheel-motored electric vehiclebased on body slip angle fuzzyobserver,” IEEE Trans.Ind. Electron., vol. 56, no. 5, pp. 1411–1419, May2009.
[12] M. Doumiati, O. Sename, L. Dugard, J.-J. Martinez-Molina,P. Gaspar,and Z. Szabo, “Integrated vehicle dynamics control viacoordination of activefront steering and rear braking,”Eur. J. Control, vol. 19, no. 2, pp. 121–143,2013.
[13] C. Hu, R. Wang, F. Yan, and N. Chen, “Output constraint control onpath following of four-wheelindependently actuated autonomous groundvehicles,” IEEETrans. Veh. Technol., vol. 65, no. 6, pp. 4033–4043,Jun. 2016.
[14] J. Wang and R. G. Longoria, “Coordinated and reconfigurablevehicle dynamics control,” IEEE Trans. Control Syst. Technol., vol. 17, no. 3, pp. 723–732, May 2009.
[15] J. Guo, L. Li, and K. Li, “An adaptive fuzzy-sliding lateralcontrol strategy of automatedvehicles based on vision navigation,” Int. J.Veh. Syst.Dyn., vol. 51, no. 10, pp. 1502–1517, 2013.
[16] H. Lee and M. Tomizuka, “Coordinatedlongitudinal and lateral motioncontrol of vehicles for IVHS,” J. Dyn. Syst., Meas., Control, vol. 123, no. 3,pp. 535–543, 2001.
[17] R. Wang, C. Hu, Z. Wang, F. Yan, and N. Chen, “Integrated optimaldynamics control of 4WD4WS electric ground vehiclewith tireroad frictionalcoefficient estimation,” Mech.Syst. Signal Process., vols. 60–61, pp. 727–741, Aug. 2015.
[18] H. Li, J. Yu, C. Hilton, and H. Liu, “Adaptive sliding-mode controlfor nonlinear active suspension vehiclesystems using T–S fuzzy approach,” IEEETrans. Ind. Electron., vol. 68, no. 8, pp. 3328–3338, Aug. 2013.
[19] H. Ho, Y. F. Wong, and A. B. Rad, “Robust fuzzy tracking control forrobotic manipulators,” Simul. Model. Pract. Theory, vol. 15, no. 7, pp.801–816, 2007.
[20] S. Tong and Y. Li, “Adaptivefuzzy output feedback trackingbackstepping control of strict-feedback nonlinearsystems with unknown deadzones,” IEEE Trans. NeuralNetw., vol. 20, no. 1, pp. 168–180, Feb. 2012.
[21] A. F. Amer, E. A. Sallam, and W. M. Elawady, “Adaptive fuzzy slidingmode control using supervisory fuzzy controlfor 3 DOF planar robotmanipulators,” Appl. SoftComput., vol. 11, no. 8, pp. 4943–4953, 2011.
[22] R. de Castro, M. Tanelli, R. E. Araújo, and S. M. Savaresi, “Designofsafety-oriented control allocation strategies for overactuatedelectricvehicles,” Int. J. Veh. Syst. Dyn., vol. 52,no. 8, pp. 1017–1046, 2014.
[23] J. A. M. Petersen and M. Bodson, “Constrained quadratic programmingtechniques for control allocation,” IEEE Trans. Control Syst. Technol., vol.14, no. 1, pp. 91–98, Jan. 2006.
[24] O. Härkegård and S. T. Glad, “Resolving actuator redundancy—Optimalcontrolvs. control allocation,” Automatica, vol. 41, no. 1,pp. 137–144, 2005.
[25] D. Kasinathan, A. Kasaiezadeh, A. Wong, A. Khajepour, S.Chen, andB. Litkouhi, “An optimal torque vectoring control forvehicle applications viareal-time constraints,” IEEETrans. Veh. Technol., vol. 65, no. 6, pp.4368–4378, Jun.2016.
[26] T. Goggia et al., “Integralsliding mode for the torque-vectoringcontrol of fully electric vehicles:Theoretical design and experimentalassessment,” IEEETrans. Veh. Technol., vol. 64, no. 5, pp. 1701–1715,May2017.
[27] L. Chen, Y. Luo, M. Bian, Z. Qin, J. Luo, and K. Li, “Estimation oftire-road friction coefficient based on frequencydomaindata fusion,” Mech. Syst. Signal Process., vol. 85,pp. 177–192, Feb. 2017.
[28] Y. Dai, Y. Luo, W. Chu, and K. Li, “Vehicle state estimation basedon the integration of low-cost GPS andINS,” in Int. Conf. Adv. Veh. Technol.Integr.,Changchun, China, Jul. 2012, pp. 677–681.
[29] W. Chu, State Estimation and Coordinated Control forDistributedElectric Vehicles. Berlin, Germany: Springer, 2016.
[30] J. Guo, Y. Luo, and K. Li, “Dynamic coordinated control foroveractuated autonomous electricvehicles with nonholonomic constraints vianonsingular terminal sliding modetechnique,” Nonlinear Dyn., vol. 85, no. 1,pp. 583–597, 2016.

全文完结

来源:同济智能汽车研究所

 

自动驾驶四轮独立驱动电动汽车的自适应分层轨迹跟踪控制方法(六)

知识讲堂自动驾驶小能手 发表了文章 • 0 个评论 • 444 次浏览 • 2019-08-01 12:37 • 来自相关话题

4.结果与讨论为了评估第三节中提出的控制方法的表现,在不同的工作条件下进行了一系列的模拟和实验测试。 ...查看全部

4.结果与讨论

为了评估第三节中提出的控制方法的表现,在不同的工作条件下进行了一系列的模拟和实验测试。

1.png2.png3.png


图(9):双车道变换模拟试验中的横向误差

A、模拟结果

在本节中,为了说明所提出的控制方法对轨迹跟踪问题的有效性,实施了一些matlab-
adams协同仿真测试,在Adams soft中,建立了非线性车辆模型来模拟车辆的可靠动态行为[30]。

首先,对所提出的控制方法进行了鲁棒性能分析,自动驾驶车辆在湿滑路面上以100km/h的高速行驶,附着系数设定为0.3。前后轮胎刚度的不确定参数在测试中的变化范围为正常值的20%到正常值。假设自动驾驶车辆沿直线行驶,初始横向和角度误差分别假设为0.2m和3.5deg。

所提出的轨迹跟踪控制方法的响应结果如图4到图7所示。图4和图5分别描绘了横向误差和角度误差的动态响应。可以发现,在不同的驱动条件下,横向误差和角度误差可以收敛到零,尽管在正常轮胎刚度下的误差振荡比在20%正常轮胎刚度值下误差振荡小。

图6和图7分别示出了滑移角和横摆率的响应结果,它们可以收敛到期望值,这表明自动驾驶车辆在这两个驱动情况下是稳定的。此外,可以看出,所提出的轨迹跟踪控制系统对于自动驾驶车辆的参数不确定性具有很强的鲁棒性,并且实现了良好的跟踪性能。

其次,采用双车道变换作为参考轨迹来说明所提出的控制系统的动态特性,自动驾驶车辆在干路面上以70km/ h的初始速度运行,具有高的道路附着系数0.7并且行驶过程中保持直线行驶没有转向角。双车道变换轨迹如图8所示。自动驾驶车辆以初始横向误差0.1m和初始偏航角1.8deg开始行驶。此外,传统的具有两个控制输入和ΔM的线性二次调节器(LQR)[5]被设计为高级控制律,与现有的AFSMC控制方法形成对比。

图9显示了横向误差的响应结果,当自动驾驶车辆进入车道变换过程时,所提出的AFSMC控制方法和LQR方法的最大横向误差分别为±0.1m和±0.4m。角度误差的响应结果如图10所示,可以发现所提出的控制方法和LQR控制方法的稳态角度误差是有界的,它们的最大值分别小于1.5°和3°。

1.png2.png3.png4.png

图11显示了所提出的ASMFC和LQR控制器提供的相应滑移角,显然,可以发现它们都可以稳定并收敛到可接受的值,但是所提出的控制系统控制的滑移角的超调量比LQR控制系统的小。图12说明了横摆率的响应结果,值得注意的是,与LQR控制器相比,所提出的控制器显着降低了振荡并提高了响应速度。

图13表示转向角的响应结果。可以发现,在路径的曲线部分中由所提出的控制器控制的转向角的幅度变化比LQR控制器的小。图14显示了外部横摆力矩的响应结果,可以看出由所提出的AFSMC方法控制的外部横摆力矩的振荡远小于LQR方法。图15和图16示出了所提出的控制系统和LQR控制系统的四个附加轮胎纵向力的响应结果。它们表明,所提出的PI控制分配法可用于获得更好的分配结果。

未完待续……

来源 | 同济智能汽车研究所 智能转向研究组

 

自动驾驶四轮独立驱动电动汽车的自适应分层轨迹跟踪控制方法(五)

知识讲堂自动驾驶小能手 发表了文章 • 0 个评论 • 437 次浏览 • 2019-08-01 12:29 • 来自相关话题

然后,基于 ...查看全部

1.png

然后,基于指定的模糊控制规则库,将饱和函数固定的边界层厚度替换为时变的。

所提出的模糊逻辑系统的输入和输出变量分别是滑动表面矢量s和厚度Φ的2范数。具有模糊集小(SM),中(NM),大(B)的三角型输入隶属函数和具有模糊集宽(W),中(S),窄(N)的输出隶属函数用于模糊逻辑系统,如表1所示。

备注3:控制定律(23)的方向应用时可能会发生抖动,因为它包含符号函数和信号不连续性。

备注4:有必要建立一个准确的车辆动力学模型,以避免由于系统的不确定性引起的控制律的高振幅。

D、伪逆控制分配

自动驾驶4WID电动车采用冗余致动器来提高可靠性和操纵稳定性,但这种过度致动系统的主要挑战是如何有效地处理物理约束和致动器冗余[22]-[24]。由上述高级控制律产生的外部横摆力矩ΔM应分配到四个轮胎中。为了最佳地确定轮胎纵向力并最小化能量消耗[25],[26],自动驾驶车辆的外部横摆力矩的控制分配可以适当地转换为多约束优化问题,如下所示:

2.png3.png4.png

未完待续……

来源 | 同济智能汽车研究所 智能转向研究组

自动驾驶四轮独立驱动电动汽车的自适应分层轨迹跟踪控制方法(四)

知识讲堂自动驾驶小能手 发表了文章 • 0 个评论 • 421 次浏览 • 2019-08-01 12:22 • 来自相关话题

1.png2.png1.pngQQ截图20190801114748.png1.png1.png1.png

未完待续……

来源 | 同济智能汽车研究所 智能转向研究组

自动驾驶四轮独立驱动电动汽车的自适应分层轨迹跟踪控制方法(三)

知识讲堂自动驾驶小能手 发表了文章 • 0 个评论 • 406 次浏览 • 2019-08-01 12:07 • 来自相关话题

3.系统建模轨迹跟踪控制的掩模用来监督自动驾驶车辆,使其及时跟踪所需路径,并提高乘坐舒适性和稳定性。在本节中,为了处理这些外部干扰、自动驾驶4WID车辆的参数不确定性和过度致动特征[1],[17],设计了一 ...查看全部

3.系统建模

轨迹跟踪控制的掩模用来监督自动驾驶车辆,使其及时跟踪所需路径,并提高乘坐舒适性和稳定性。在本节中,为了处理这些外部干扰、自动驾驶4WID车辆的参数不确定性和过度致动特征[1],[17],设计了一个由两个层次组成的新型自适应分层控制系统,以及相应的控制框架。如图3所示。1.png2.png3.png4.png6.png

未完待续……

来源 | 同济智能汽车研究所 智能转向研究组

自动驾驶四轮独立驱动电动汽车的自适应分层轨迹跟踪控制方法(二)

知识讲堂自动驾驶小能手 发表了文章 • 0 个评论 • 408 次浏览 • 2019-08-01 11:58 • 来自相关话题

2.系统描述推导该模型的主要假设如下:1)忽略滚动、俯仰和垂直运动。2)忽略由于载荷变化造成的左右车轮之间轮胎转弯特性的差异;将轮胎模型近似为线性的。3)折扣执行器动态。第一个假设是有效的,在典型的和稍微严 ...查看全部

2.系统描述

推导该模型的主要假设如下:1)忽略滚动、俯仰和垂直运动。2)忽略由于载荷变化造成的左右车轮之间轮胎转弯特性的差异;将轮胎模型近似为线性的。3)折扣执行器动态。第一个假设是有效的,在典型的和稍微严重的车辆操纵下没有明显的精度损失[16]。假设纵向速度为常数值,则使用牛顿定理基于上述假设可得到横向动力学方程,  

1.png

然后,如图1所示,一个以滑移角β和偏航率r为自由度的的两自由度(DoF)动力学模型表示为:

2.png
其中ΔMz为:
3.png
其中参数m是车辆总质量,Iz表示围绕重心(CG)的车辆惯性,vx是纵向速度,δf是前转向角,ls是轮距的一半,lf和lr表示前轮轴和后轮轴距CG的距离。Fyi和Fxi表示第i轮胎的纵向和横向轮胎力,并且i = 1,2,3,4 =fl,fr,rl,rr。

使用轮胎/道路界面的线性模型,则轮胎侧向力可以用前后轮滑移角表示,如下:

4.png
其中Fyf和Fyr分别代表前轮胎和后轮胎的广义轮胎侧向力。Fyf = Fyfl+ Fyfr且Fyr = Fyrl + Fyrr,Cf和Cr分别代表前后转弯刚度。af和ar分别表示前后轮胎侧滑角,其可以计算为:
5.png
将(4)和(3)代入(1),可以得到下列等式:
6.png
其中
7.png
8.png
图2所示为自动驾驶车辆的轨迹跟踪运动学模型,其视觉系统提取道路特征,然后计算车辆和期望路径之间的位置误差。ey是横向误差,其表示当前车辆位置到期望路径的距离,ea是角度误差,其表示车辆航向与预定距离DL处的期望路径的切线方向之间的误差。轨迹跟踪运动学模型可以通过测量获得,如下[15]:
9.png
其中KL(t)表示所需轨迹的曲率。


车辆横向动力学方程(1)与轨迹跟踪动力学(2)相结合,形成具有不确定性和外部扰动的多输入多输出(MIMO)线性系统,可表示为:
10.png
其中系统矩阵可以写成如下形式:
11.png
其中x =[ey ea βr ]T和u =[δf ΔM]T分别是系统的状态向量和系统的控制输入。y =[ey ea]T是系统的测量输出,ω= [KL]T是外部干扰。 ΔA和ΔB分别是不确定项。


所需假设如下:
1)数组(A,B)是稳定的。
2)数组(A,C)是可检测的。
3)状态x可用,w是具有有界变化值的干扰向量。
4)存在已知的常数ρA和ρB,使得II ΔA(t)II≤ρA且II ΔB(t)II≤ρB。
未完待续……
来源 | 同济智能汽车研究所 智能转向研究组

自动驾驶四轮独立驱动电动汽车的自适应分层轨迹跟踪控制方法(一)

知识讲堂自动驾驶小能手 发表了文章 • 0 个评论 • 402 次浏览 • 2019-08-01 11:47 • 来自相关话题

编者按:轨迹跟踪在自动驾驶汽车的驾驶性能中起着极其重要的作用,而对于实现四轮独立驱动(4WID)的轨迹跟踪控制这一点,存在许多诸如参数不确定、不可避免的外部干扰等研究阻力。但文章中提出了一种新颖的自适应分层的自动驾驶跟踪 ...查看全部

编者按:轨迹跟踪在自动驾驶汽车的驾驶性能中起着极其重要的作用,而对于实现四轮独立驱动(4WID)的轨迹跟踪控制这一点,存在许多诸如参数不确定、不可避免的外部干扰等研究阻力。但文章中提出了一种新颖的自适应分层的自动驾驶跟踪控制框架,可以用来监控四轮独立驱动自动驾驶汽车的横向运动。文章主要贡献在于提出了一种自动驾驶4WID电动汽车的分层轨迹跟踪控制结构,其包括自适应高级控制律和低级伪逆控制分配律;并且构造了一种具有基于线性矩阵不等式(LMI)的切换表面的自适应模糊滑模高级横向控制器,可以在车辆具有外部扰动、时变和参数不确定性的条件下保持鲁棒性;最后用仿真和实验结果进一步证明了方案的有效性和可行性。该研究改进了不同驱动条件下的自动驾驶轨迹跟踪性能,有一定的研究意义。

 

本文译自《IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2018》收录文章《An Adaptive Hierarchical Trajectory Following Control Approach ofAutonomous Four-Wheel Independent Drive Electric Vehicles》

原作者:
Jinghua Guo, Yugong Luo, and Keqiang Li
原文链接:
https://ieeexplore.ieee.org/document/8057584
摘要:本文研究了一类具有参数不确定性、外部干扰和过度驱动特征的自动驾驶汽车的跟踪控制问题。提出了一种新颖的自适应分层控制框架,用于监控自动驾驶四轮独立驱动电动汽车的横向运动。首先,设计了一种具有以线性矩阵不等式为基础的切换面的自适应滑模高级控制律,用于产生前转向角和外部横摆力矩矢量,其中不确定项和切换控制增益由逻辑模糊技术进行自适应调节。为了进一步缓和抖振现象,引入了自适应边界层。其次,提出了一种伪逆低级控制分配算法,通过协调和重构轮胎纵向力来优化分配外部横摆力矩。最后,数值模拟和实验结果验证了所提出的自适应控制方法具有突出的跟踪性能。

关键词: 自动驾驶汽车,自适应分层控制,轨迹跟踪控制,车辆横向动态

1.前言

在过去几十年中,有关交通拥堵,意外伤害和环境污染的社会问题变得越来越严重。自动驾驶四轮独立驱动(4WID)电动车,提供四轮独立驱动,可以快速生成对自动驾驶车辆的灵活和精确的扭矩响应[1],并被视为一种有效和系统的方法,以提高道路利用率,提高车辆安全性并降低移动成本。
轨迹跟踪控制在自动驾驶汽车的驾驶性能中起着极其重要的作用,其致力于以尽可能精确的连续和平滑的方式迅速地遵循期望的轨迹。对自动驾驶4WID电动车辆的轨迹跟踪控制的挑战涉及自动驾驶电动车辆具有参数不确定性和不可避免的外部干扰。更重要的是,自动驾驶电动汽车是一种具有非完整约束的机械系统,这进一步增加了车辆动态控制的难度。因此,对于自动驾驶4WID电动车辆的轨迹跟踪控制要求控制方法能够处理参数不确定性、不可避免的外部干扰和不可避免的轮胎滑动效应。

近年来,学者们在自动驾驶车辆的各种轨迹跟踪控制方法上花费了很多的努力。在文献[2]中,设计了一种自动驾驶汽车非线性反馈轨迹跟踪控制系统,该系统参与了2005年DARPA大挑战。在文献[3]中,提出了一种用于自动驾驶车辆轨迹跟踪控制的滑模反馈学习控制器,并提出了2型(Type-2)模糊神经网络的参数更新规则。在文献[4]中,构建了自动驾驶车辆的嵌套比例 — 积分 — 微分控制结构,从理论上研究了该闭环轨迹跟踪控制系统关于速度变化和不确定车辆物理参数方面的鲁棒性。在文献[5]中,提出了一种最优模糊轨迹跟踪控制器来模拟更加人性化的驾驶行为,其中隶属函数和规则的参数由遗传算法(GA)调节。由于车辆横向动力学对纵向速度的变化敏感,因此基于反馈线性化方法和一个不匹配的观测器设计了线性时变控制器[6]。在文献[7]中,为轮胎引起的低速振荡构建了一种新的动态轮胎缺陷模型,并设计了基于线性矩阵不等式(LMI)优化的自动驾驶车辆反馈横向控制结构。在文献[8]中,提出了一种非线性模型预测控制策略,用于自动驾驶车辆的轨迹跟踪控制,以确定在最高可能进入速度下的前轮转向角。在文献[9]中,输入/输出混合自动机框架被设计用于自动转向,并且初步实验测试验证了所提出的控制方法的可行性,其确保了轨迹跟踪控制系统的高性能。

研究车辆操纵和横向稳定性的控制问题是至关重要且有吸引力的。学者们已经在车辆的横向动力学控制策略上付出了很多努力,例如,电子稳定程序(ESP)[10],直接横摆力矩控制(DYC)[11]和主动前轮转向(AFS)控制[12]。由于DYC具有有效改善车辆操纵性和严重驾驶操纵中的主动安全性的能力,因此被认为是一种有前景的横向控制策略。众所周知,DYC设计在四轮独立驱动车辆中以处理轮胎执行器的冗余。为了进一步提高车辆可靠性和操纵稳定性,集成的DYC和AFS控制也得到了广泛的应用。关于车辆的自动转向控制,DYC的应用可以提供快速的扭矩响应和灵活的驱动。但是,基于DYC的自动驾驶车辆轨迹跟踪控制研究却比较有限[13]。

特别地,众所周知自动驾驶4WID电动车辆是过度驱动的系统[14],其可以有效地增强自动驾驶车辆的可用性和可靠性。然而,在冗余自动驾驶车辆系统中,需要将期望的外部力矩最佳地分配给每个轮胎执行器。

本文提出了一种自适应分层轨迹跟踪控制系统,以提高自动驾驶4WID电动汽车的跟踪性能,提高横向稳定性。本文的主要贡献如下:

(一)提出了一种自动驾驶4WID电动汽车的分层轨迹跟踪控制结构,其包括自适应高级控制律和低级伪逆控制分配律。   

(二)构造了一种具有基于线性矩阵不等式(LMI)的切换表面的自适应模糊滑模高级横向控制器,可以在车辆具有外部扰动、时变和参数不确定性的条件下保持鲁棒性。

(三)仿真和实验结果进一步证明了所提出的分层控制方法的有效性和可行性。

本文的其余部分安排如下:在第二节中,讲述自动驾驶4WID电动汽车的横向动力学模型开发。在第三节中,提出了一种新的自适应分层控制框架,包括自适应模糊滑动控制方案和用于自动轨迹跟踪控制的伪逆控制分配方案。提出的控制框架的在严苛的操作条件下的模拟和实验结果在第四节中说明。最后,在第五节中得出结论。

未完待续……       

来源 | 同济智能汽车研究所 智能转向研究组

自动驾驶四轮独立驱动电动汽车的自适应分层轨迹跟踪控制方法(七)

知识讲堂自动驾驶小能手 发表了文章 • 0 个评论 • 446 次浏览 • 2019-08-01 12:46 • 来自相关话题

1.png2.png3.png4.png5.png

B、实验结果

所提出的轨迹跟踪控制系统在一辆原型自动驾驶轮内电机4WID电动车辆上实施并成功测试,原型车如图17所示。

选择四个永磁无刷直流(BLDC)电动机作为轮内电动机。角位移传感器用于测量车轮的转向角。横摆率,纵向速度和滑移角等车辆状态量由GPS / INS导航系统精确测量和估算[28],[29]。原型车配备实时视觉系统,由两个CCD摄像头和一个基于PC的中央处理系统组成,视觉系统的处理时间小于每帧20ms。值得一提的是,视觉系统可以实时检测预定的跟踪轨迹并精确确定横向误差和角度误差[15]。道路附着力估计器的带宽为25Hz [27],控制器的采样间隔限制为40ms。图18示出了在实验测试中使用的参考轨迹。相应的初始横向误差和偏航误差分别设定为0.1m和2deg,纵向速度假设为25km/ h。

图19显示了横向误差的实验结果,可以看出所提出的控制方案和LQR控制方案的稳态横向误差分别限制在±0.2m和±0.4m之内,最大横向误差发生在曲率最大的路段。图20示出了角度误差的实验结果,应注意所提出的控制方案和LQR控制方案的稳态角度误差分别在±1°和±2°范围内。图19和图20表明,所提出的AFSMC控制器可以确保自动驾驶车辆实时跟踪参考轨迹,并且与LQR控制器相比,它产生更高的精度和更低的超调量和振荡。图21和图22示出了滑移角和横摆率的响应结果,它们表明所提出的控制器和LQR控制器可以分别将滑移角和横摆率限制在可接受的范围内。然而,所提出的控制系统显着提高了响应精度。图23示出了比较的前转向角,可以看出所提出的控制方案的控制输入比LQR控制器更平滑。图24显示了所提出的控制方法的外部横摆力矩。可以看出,所提出的控制方案可以实时产生外部横摆力矩,这可以增强自动驾驶车辆的横向稳定性。

5.结论

本文提出了一种新的四轮独立驱动自动驾驶汽车的自适应分层轨迹跟踪控制方案。首先,提出了一种基于LMI的自适应滑模高级控制算法,用于确定自动驾驶车辆的前转向和外横摆力矩矢量。由于参数不确定性和外部扰动通常是不可测量的,因此通过模糊控制系统估算所提出的高级控制律的不确定项和控制增益,并引入自适应模糊边界层。然后,设计伪逆控制分配策略以将期望的外部横摆力矩动态地分配到冗余轮胎致动器中。此外,仿真和实验结果表明,所提出的控制方案可以在不同的驱动条件下实现良好的跟踪性能。

参考文献

[1]  J. Guo, K. Li, and Y. Luo,“Coordinated control of autonomous four wheel drive electric vehiclesforplatooning and trajectory tracking using a hierarchical architecture,” J. Dyn.Syst. Meas. Control, vol. 137, no. 10, p. 101001, 2015.
[2] S. Thrun, M. Montemerlo, andH. Dahlkamp, “Stanley: The robot that won the DARPA grand challenge,” J. FieldRobot., vol. 23, no. 9, pp. 661–692,2006.
[3]  E. Kayacan, E. Kayacan, H.Ramon, O. Kaynak, and W.Saeys, “Towards agrobots: Trajectory control ofanautonomous tractor using type-2 fuzzy logic controllers,” IEEE/ASME Trans.Mechatronics, vol. 20, no. 1, pp. 287–298, Feb. 2015.
[4]  R. Marino, S. Scalzi, and M.Netto, “Nested PID steering control for lane keeping in autonomous vehicles,”Control. Eng. Pract., vol. 19, no. 12, pp. 1459–1467, 2011.
[5]  J. Guo, P. Hu, L. Li, and R.Wang, “Design of automatic steering controller for trajectory trackingofunmanned vehicles using genetic algorithms,” IEEETrans. Veh. Technol., vol.61, no. 7, pp. 2913–2924,Sep. 2012.
[6]  J. Huang and M. Tomizuka, “LTVcontroller design for vehicle lateral control under fault in rearsensors,”IEEE/ASME Trans. Mechatronics, vol. 10, no. 1,pp. 1–7, Feb. 2005.
[7]  H.-S. Tan, F. Bu, and B.Bougler, “A real-world application of laneguidance technologies—Automatedsnowblower,” IEEE Trans. Intell.Transp. Syst., vol. 8, no. 3, pp. 538–548,Sep. 2007.
[8]  P. Falcone, F. Borrelli, J.Asgari, H. E. Tseng, and D.Hrovat, “Predictive active steering controlforautonomous vehicle systems,” IEEE Trans. Control Syst.Technol., vol. 15, no.3, pp. 566–580, May 2007.
[9]  N. M. Enache, S. Mammar, M.Netto, and B. Lusetti, “Driver steering assistance for lane-departure avoidancebased onhybrid automata and composite Lyapunov function,” IEEETrans. Intell.Transp. Syst., vol. 11, no. 1, pp. 28–39,Mar. 2010.
[10] L. Liang, J. Gang, C. Jie, Z. Hongjun, C. Dongpu, and S.Jian, “Anovel vehicle dynamics stability controlalgorithm based on the hierarchicalstrategy with constrain of nonlinear tyreforces,” Int. J. Veh. Syst. Dyn.,vol. 53, no. 8, pp.1093–1116, 2015.
[11] C. Geng, L. Mostefai, M. Denai, and Y. Hori, “Direct yaw-momentcontrol of an in-wheel-motored electric vehiclebased on body slip angle fuzzyobserver,” IEEE Trans.Ind. Electron., vol. 56, no. 5, pp. 1411–1419, May2009.
[12] M. Doumiati, O. Sename, L. Dugard, J.-J. Martinez-Molina,P. Gaspar,and Z. Szabo, “Integrated vehicle dynamics control viacoordination of activefront steering and rear braking,”Eur. J. Control, vol. 19, no. 2, pp. 121–143,2013.
[13] C. Hu, R. Wang, F. Yan, and N. Chen, “Output constraint control onpath following of four-wheelindependently actuated autonomous groundvehicles,” IEEETrans. Veh. Technol., vol. 65, no. 6, pp. 4033–4043,Jun. 2016.
[14] J. Wang and R. G. Longoria, “Coordinated and reconfigurablevehicle dynamics control,” IEEE Trans. Control Syst. Technol., vol. 17, no. 3, pp. 723–732, May 2009.
[15] J. Guo, L. Li, and K. Li, “An adaptive fuzzy-sliding lateralcontrol strategy of automatedvehicles based on vision navigation,” Int. J.Veh. Syst.Dyn., vol. 51, no. 10, pp. 1502–1517, 2013.
[16] H. Lee and M. Tomizuka, “Coordinatedlongitudinal and lateral motioncontrol of vehicles for IVHS,” J. Dyn. Syst., Meas., Control, vol. 123, no. 3,pp. 535–543, 2001.
[17] R. Wang, C. Hu, Z. Wang, F. Yan, and N. Chen, “Integrated optimaldynamics control of 4WD4WS electric ground vehiclewith tireroad frictionalcoefficient estimation,” Mech.Syst. Signal Process., vols. 60–61, pp. 727–741, Aug. 2015.
[18] H. Li, J. Yu, C. Hilton, and H. Liu, “Adaptive sliding-mode controlfor nonlinear active suspension vehiclesystems using T–S fuzzy approach,” IEEETrans. Ind. Electron., vol. 68, no. 8, pp. 3328–3338, Aug. 2013.
[19] H. Ho, Y. F. Wong, and A. B. Rad, “Robust fuzzy tracking control forrobotic manipulators,” Simul. Model. Pract. Theory, vol. 15, no. 7, pp.801–816, 2007.
[20] S. Tong and Y. Li, “Adaptivefuzzy output feedback trackingbackstepping control of strict-feedback nonlinearsystems with unknown deadzones,” IEEE Trans. NeuralNetw., vol. 20, no. 1, pp. 168–180, Feb. 2012.
[21] A. F. Amer, E. A. Sallam, and W. M. Elawady, “Adaptive fuzzy slidingmode control using supervisory fuzzy controlfor 3 DOF planar robotmanipulators,” Appl. SoftComput., vol. 11, no. 8, pp. 4943–4953, 2011.
[22] R. de Castro, M. Tanelli, R. E. Araújo, and S. M. Savaresi, “Designofsafety-oriented control allocation strategies for overactuatedelectricvehicles,” Int. J. Veh. Syst. Dyn., vol. 52,no. 8, pp. 1017–1046, 2014.
[23] J. A. M. Petersen and M. Bodson, “Constrained quadratic programmingtechniques for control allocation,” IEEE Trans. Control Syst. Technol., vol.14, no. 1, pp. 91–98, Jan. 2006.
[24] O. Härkegård and S. T. Glad, “Resolving actuator redundancy—Optimalcontrolvs. control allocation,” Automatica, vol. 41, no. 1,pp. 137–144, 2005.
[25] D. Kasinathan, A. Kasaiezadeh, A. Wong, A. Khajepour, S.Chen, andB. Litkouhi, “An optimal torque vectoring control forvehicle applications viareal-time constraints,” IEEETrans. Veh. Technol., vol. 65, no. 6, pp.4368–4378, Jun.2016.
[26] T. Goggia et al., “Integralsliding mode for the torque-vectoringcontrol of fully electric vehicles:Theoretical design and experimentalassessment,” IEEETrans. Veh. Technol., vol. 64, no. 5, pp. 1701–1715,May2017.
[27] L. Chen, Y. Luo, M. Bian, Z. Qin, J. Luo, and K. Li, “Estimation oftire-road friction coefficient based on frequencydomaindata fusion,” Mech. Syst. Signal Process., vol. 85,pp. 177–192, Feb. 2017.
[28] Y. Dai, Y. Luo, W. Chu, and K. Li, “Vehicle state estimation basedon the integration of low-cost GPS andINS,” in Int. Conf. Adv. Veh. Technol.Integr.,Changchun, China, Jul. 2012, pp. 677–681.
[29] W. Chu, State Estimation and Coordinated Control forDistributedElectric Vehicles. Berlin, Germany: Springer, 2016.
[30] J. Guo, Y. Luo, and K. Li, “Dynamic coordinated control foroveractuated autonomous electricvehicles with nonholonomic constraints vianonsingular terminal sliding modetechnique,” Nonlinear Dyn., vol. 85, no. 1,pp. 583–597, 2016.

全文完结

来源:同济智能汽车研究所

 

自动驾驶四轮独立驱动电动汽车的自适应分层轨迹跟踪控制方法(六)

知识讲堂自动驾驶小能手 发表了文章 • 0 个评论 • 444 次浏览 • 2019-08-01 12:37 • 来自相关话题

4.结果与讨论为了评估第三节中提出的控制方法的表现,在不同的工作条件下进行了一系列的模拟和实验测试。 ...查看全部

4.结果与讨论

为了评估第三节中提出的控制方法的表现,在不同的工作条件下进行了一系列的模拟和实验测试。

1.png2.png3.png


图(9):双车道变换模拟试验中的横向误差

A、模拟结果

在本节中,为了说明所提出的控制方法对轨迹跟踪问题的有效性,实施了一些matlab-
adams协同仿真测试,在Adams soft中,建立了非线性车辆模型来模拟车辆的可靠动态行为[30]。

首先,对所提出的控制方法进行了鲁棒性能分析,自动驾驶车辆在湿滑路面上以100km/h的高速行驶,附着系数设定为0.3。前后轮胎刚度的不确定参数在测试中的变化范围为正常值的20%到正常值。假设自动驾驶车辆沿直线行驶,初始横向和角度误差分别假设为0.2m和3.5deg。

所提出的轨迹跟踪控制方法的响应结果如图4到图7所示。图4和图5分别描绘了横向误差和角度误差的动态响应。可以发现,在不同的驱动条件下,横向误差和角度误差可以收敛到零,尽管在正常轮胎刚度下的误差振荡比在20%正常轮胎刚度值下误差振荡小。

图6和图7分别示出了滑移角和横摆率的响应结果,它们可以收敛到期望值,这表明自动驾驶车辆在这两个驱动情况下是稳定的。此外,可以看出,所提出的轨迹跟踪控制系统对于自动驾驶车辆的参数不确定性具有很强的鲁棒性,并且实现了良好的跟踪性能。

其次,采用双车道变换作为参考轨迹来说明所提出的控制系统的动态特性,自动驾驶车辆在干路面上以70km/ h的初始速度运行,具有高的道路附着系数0.7并且行驶过程中保持直线行驶没有转向角。双车道变换轨迹如图8所示。自动驾驶车辆以初始横向误差0.1m和初始偏航角1.8deg开始行驶。此外,传统的具有两个控制输入和ΔM的线性二次调节器(LQR)[5]被设计为高级控制律,与现有的AFSMC控制方法形成对比。

图9显示了横向误差的响应结果,当自动驾驶车辆进入车道变换过程时,所提出的AFSMC控制方法和LQR方法的最大横向误差分别为±0.1m和±0.4m。角度误差的响应结果如图10所示,可以发现所提出的控制方法和LQR控制方法的稳态角度误差是有界的,它们的最大值分别小于1.5°和3°。

1.png2.png3.png4.png

图11显示了所提出的ASMFC和LQR控制器提供的相应滑移角,显然,可以发现它们都可以稳定并收敛到可接受的值,但是所提出的控制系统控制的滑移角的超调量比LQR控制系统的小。图12说明了横摆率的响应结果,值得注意的是,与LQR控制器相比,所提出的控制器显着降低了振荡并提高了响应速度。

图13表示转向角的响应结果。可以发现,在路径的曲线部分中由所提出的控制器控制的转向角的幅度变化比LQR控制器的小。图14显示了外部横摆力矩的响应结果,可以看出由所提出的AFSMC方法控制的外部横摆力矩的振荡远小于LQR方法。图15和图16示出了所提出的控制系统和LQR控制系统的四个附加轮胎纵向力的响应结果。它们表明,所提出的PI控制分配法可用于获得更好的分配结果。

未完待续……

来源 | 同济智能汽车研究所 智能转向研究组

 

自动驾驶四轮独立驱动电动汽车的自适应分层轨迹跟踪控制方法(五)

知识讲堂自动驾驶小能手 发表了文章 • 0 个评论 • 437 次浏览 • 2019-08-01 12:29 • 来自相关话题

然后,基于 ...查看全部

1.png

然后,基于指定的模糊控制规则库,将饱和函数固定的边界层厚度替换为时变的。

所提出的模糊逻辑系统的输入和输出变量分别是滑动表面矢量s和厚度Φ的2范数。具有模糊集小(SM),中(NM),大(B)的三角型输入隶属函数和具有模糊集宽(W),中(S),窄(N)的输出隶属函数用于模糊逻辑系统,如表1所示。

备注3:控制定律(23)的方向应用时可能会发生抖动,因为它包含符号函数和信号不连续性。

备注4:有必要建立一个准确的车辆动力学模型,以避免由于系统的不确定性引起的控制律的高振幅。

D、伪逆控制分配

自动驾驶4WID电动车采用冗余致动器来提高可靠性和操纵稳定性,但这种过度致动系统的主要挑战是如何有效地处理物理约束和致动器冗余[22]-[24]。由上述高级控制律产生的外部横摆力矩ΔM应分配到四个轮胎中。为了最佳地确定轮胎纵向力并最小化能量消耗[25],[26],自动驾驶车辆的外部横摆力矩的控制分配可以适当地转换为多约束优化问题,如下所示:

2.png3.png4.png

未完待续……

来源 | 同济智能汽车研究所 智能转向研究组

自动驾驶四轮独立驱动电动汽车的自适应分层轨迹跟踪控制方法(四)

知识讲堂自动驾驶小能手 发表了文章 • 0 个评论 • 421 次浏览 • 2019-08-01 12:22 • 来自相关话题

1.png2.png1.pngQQ截图20190801114748.png1.png1.png1.png

未完待续……

来源 | 同济智能汽车研究所 智能转向研究组

自动驾驶四轮独立驱动电动汽车的自适应分层轨迹跟踪控制方法(三)

知识讲堂自动驾驶小能手 发表了文章 • 0 个评论 • 406 次浏览 • 2019-08-01 12:07 • 来自相关话题

3.系统建模轨迹跟踪控制的掩模用来监督自动驾驶车辆,使其及时跟踪所需路径,并提高乘坐舒适性和稳定性。在本节中,为了处理这些外部干扰、自动驾驶4WID车辆的参数不确定性和过度致动特征[1],[17],设计了一 ...查看全部

3.系统建模

轨迹跟踪控制的掩模用来监督自动驾驶车辆,使其及时跟踪所需路径,并提高乘坐舒适性和稳定性。在本节中,为了处理这些外部干扰、自动驾驶4WID车辆的参数不确定性和过度致动特征[1],[17],设计了一个由两个层次组成的新型自适应分层控制系统,以及相应的控制框架。如图3所示。1.png2.png3.png4.png6.png

未完待续……

来源 | 同济智能汽车研究所 智能转向研究组

自动驾驶四轮独立驱动电动汽车的自适应分层轨迹跟踪控制方法(二)

知识讲堂自动驾驶小能手 发表了文章 • 0 个评论 • 408 次浏览 • 2019-08-01 11:58 • 来自相关话题

2.系统描述推导该模型的主要假设如下:1)忽略滚动、俯仰和垂直运动。2)忽略由于载荷变化造成的左右车轮之间轮胎转弯特性的差异;将轮胎模型近似为线性的。3)折扣执行器动态。第一个假设是有效的,在典型的和稍微严 ...查看全部

2.系统描述

推导该模型的主要假设如下:1)忽略滚动、俯仰和垂直运动。2)忽略由于载荷变化造成的左右车轮之间轮胎转弯特性的差异;将轮胎模型近似为线性的。3)折扣执行器动态。第一个假设是有效的,在典型的和稍微严重的车辆操纵下没有明显的精度损失[16]。假设纵向速度为常数值,则使用牛顿定理基于上述假设可得到横向动力学方程,  

1.png

然后,如图1所示,一个以滑移角β和偏航率r为自由度的的两自由度(DoF)动力学模型表示为:

2.png
其中ΔMz为:
3.png
其中参数m是车辆总质量,Iz表示围绕重心(CG)的车辆惯性,vx是纵向速度,δf是前转向角,ls是轮距的一半,lf和lr表示前轮轴和后轮轴距CG的距离。Fyi和Fxi表示第i轮胎的纵向和横向轮胎力,并且i = 1,2,3,4 =fl,fr,rl,rr。

使用轮胎/道路界面的线性模型,则轮胎侧向力可以用前后轮滑移角表示,如下:

4.png
其中Fyf和Fyr分别代表前轮胎和后轮胎的广义轮胎侧向力。Fyf = Fyfl+ Fyfr且Fyr = Fyrl + Fyrr,Cf和Cr分别代表前后转弯刚度。af和ar分别表示前后轮胎侧滑角,其可以计算为:
5.png
将(4)和(3)代入(1),可以得到下列等式:
6.png
其中
7.png
8.png
图2所示为自动驾驶车辆的轨迹跟踪运动学模型,其视觉系统提取道路特征,然后计算车辆和期望路径之间的位置误差。ey是横向误差,其表示当前车辆位置到期望路径的距离,ea是角度误差,其表示车辆航向与预定距离DL处的期望路径的切线方向之间的误差。轨迹跟踪运动学模型可以通过测量获得,如下[15]:
9.png
其中KL(t)表示所需轨迹的曲率。


车辆横向动力学方程(1)与轨迹跟踪动力学(2)相结合,形成具有不确定性和外部扰动的多输入多输出(MIMO)线性系统,可表示为:
10.png
其中系统矩阵可以写成如下形式:
11.png
其中x =[ey ea βr ]T和u =[δf ΔM]T分别是系统的状态向量和系统的控制输入。y =[ey ea]T是系统的测量输出,ω= [KL]T是外部干扰。 ΔA和ΔB分别是不确定项。


所需假设如下:
1)数组(A,B)是稳定的。
2)数组(A,C)是可检测的。
3)状态x可用,w是具有有界变化值的干扰向量。
4)存在已知的常数ρA和ρB,使得II ΔA(t)II≤ρA且II ΔB(t)II≤ρB。
未完待续……
来源 | 同济智能汽车研究所 智能转向研究组

自动驾驶四轮独立驱动电动汽车的自适应分层轨迹跟踪控制方法(一)

知识讲堂自动驾驶小能手 发表了文章 • 0 个评论 • 402 次浏览 • 2019-08-01 11:47 • 来自相关话题

编者按:轨迹跟踪在自动驾驶汽车的驾驶性能中起着极其重要的作用,而对于实现四轮独立驱动(4WID)的轨迹跟踪控制这一点,存在许多诸如参数不确定、不可避免的外部干扰等研究阻力。但文章中提出了一种新颖的自适应分层的自动驾驶跟踪 ...查看全部

编者按:轨迹跟踪在自动驾驶汽车的驾驶性能中起着极其重要的作用,而对于实现四轮独立驱动(4WID)的轨迹跟踪控制这一点,存在许多诸如参数不确定、不可避免的外部干扰等研究阻力。但文章中提出了一种新颖的自适应分层的自动驾驶跟踪控制框架,可以用来监控四轮独立驱动自动驾驶汽车的横向运动。文章主要贡献在于提出了一种自动驾驶4WID电动汽车的分层轨迹跟踪控制结构,其包括自适应高级控制律和低级伪逆控制分配律;并且构造了一种具有基于线性矩阵不等式(LMI)的切换表面的自适应模糊滑模高级横向控制器,可以在车辆具有外部扰动、时变和参数不确定性的条件下保持鲁棒性;最后用仿真和实验结果进一步证明了方案的有效性和可行性。该研究改进了不同驱动条件下的自动驾驶轨迹跟踪性能,有一定的研究意义。

 

本文译自《IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2018》收录文章《An Adaptive Hierarchical Trajectory Following Control Approach ofAutonomous Four-Wheel Independent Drive Electric Vehicles》

原作者:
Jinghua Guo, Yugong Luo, and Keqiang Li
原文链接:
https://ieeexplore.ieee.org/document/8057584
摘要:本文研究了一类具有参数不确定性、外部干扰和过度驱动特征的自动驾驶汽车的跟踪控制问题。提出了一种新颖的自适应分层控制框架,用于监控自动驾驶四轮独立驱动电动汽车的横向运动。首先,设计了一种具有以线性矩阵不等式为基础的切换面的自适应滑模高级控制律,用于产生前转向角和外部横摆力矩矢量,其中不确定项和切换控制增益由逻辑模糊技术进行自适应调节。为了进一步缓和抖振现象,引入了自适应边界层。其次,提出了一种伪逆低级控制分配算法,通过协调和重构轮胎纵向力来优化分配外部横摆力矩。最后,数值模拟和实验结果验证了所提出的自适应控制方法具有突出的跟踪性能。

关键词: 自动驾驶汽车,自适应分层控制,轨迹跟踪控制,车辆横向动态

1.前言

在过去几十年中,有关交通拥堵,意外伤害和环境污染的社会问题变得越来越严重。自动驾驶四轮独立驱动(4WID)电动车,提供四轮独立驱动,可以快速生成对自动驾驶车辆的灵活和精确的扭矩响应[1],并被视为一种有效和系统的方法,以提高道路利用率,提高车辆安全性并降低移动成本。
轨迹跟踪控制在自动驾驶汽车的驾驶性能中起着极其重要的作用,其致力于以尽可能精确的连续和平滑的方式迅速地遵循期望的轨迹。对自动驾驶4WID电动车辆的轨迹跟踪控制的挑战涉及自动驾驶电动车辆具有参数不确定性和不可避免的外部干扰。更重要的是,自动驾驶电动汽车是一种具有非完整约束的机械系统,这进一步增加了车辆动态控制的难度。因此,对于自动驾驶4WID电动车辆的轨迹跟踪控制要求控制方法能够处理参数不确定性、不可避免的外部干扰和不可避免的轮胎滑动效应。

近年来,学者们在自动驾驶车辆的各种轨迹跟踪控制方法上花费了很多的努力。在文献[2]中,设计了一种自动驾驶汽车非线性反馈轨迹跟踪控制系统,该系统参与了2005年DARPA大挑战。在文献[3]中,提出了一种用于自动驾驶车辆轨迹跟踪控制的滑模反馈学习控制器,并提出了2型(Type-2)模糊神经网络的参数更新规则。在文献[4]中,构建了自动驾驶车辆的嵌套比例 — 积分 — 微分控制结构,从理论上研究了该闭环轨迹跟踪控制系统关于速度变化和不确定车辆物理参数方面的鲁棒性。在文献[5]中,提出了一种最优模糊轨迹跟踪控制器来模拟更加人性化的驾驶行为,其中隶属函数和规则的参数由遗传算法(GA)调节。由于车辆横向动力学对纵向速度的变化敏感,因此基于反馈线性化方法和一个不匹配的观测器设计了线性时变控制器[6]。在文献[7]中,为轮胎引起的低速振荡构建了一种新的动态轮胎缺陷模型,并设计了基于线性矩阵不等式(LMI)优化的自动驾驶车辆反馈横向控制结构。在文献[8]中,提出了一种非线性模型预测控制策略,用于自动驾驶车辆的轨迹跟踪控制,以确定在最高可能进入速度下的前轮转向角。在文献[9]中,输入/输出混合自动机框架被设计用于自动转向,并且初步实验测试验证了所提出的控制方法的可行性,其确保了轨迹跟踪控制系统的高性能。

研究车辆操纵和横向稳定性的控制问题是至关重要且有吸引力的。学者们已经在车辆的横向动力学控制策略上付出了很多努力,例如,电子稳定程序(ESP)[10],直接横摆力矩控制(DYC)[11]和主动前轮转向(AFS)控制[12]。由于DYC具有有效改善车辆操纵性和严重驾驶操纵中的主动安全性的能力,因此被认为是一种有前景的横向控制策略。众所周知,DYC设计在四轮独立驱动车辆中以处理轮胎执行器的冗余。为了进一步提高车辆可靠性和操纵稳定性,集成的DYC和AFS控制也得到了广泛的应用。关于车辆的自动转向控制,DYC的应用可以提供快速的扭矩响应和灵活的驱动。但是,基于DYC的自动驾驶车辆轨迹跟踪控制研究却比较有限[13]。

特别地,众所周知自动驾驶4WID电动车辆是过度驱动的系统[14],其可以有效地增强自动驾驶车辆的可用性和可靠性。然而,在冗余自动驾驶车辆系统中,需要将期望的外部力矩最佳地分配给每个轮胎执行器。

本文提出了一种自适应分层轨迹跟踪控制系统,以提高自动驾驶4WID电动汽车的跟踪性能,提高横向稳定性。本文的主要贡献如下:

(一)提出了一种自动驾驶4WID电动汽车的分层轨迹跟踪控制结构,其包括自适应高级控制律和低级伪逆控制分配律。   

(二)构造了一种具有基于线性矩阵不等式(LMI)的切换表面的自适应模糊滑模高级横向控制器,可以在车辆具有外部扰动、时变和参数不确定性的条件下保持鲁棒性。

(三)仿真和实验结果进一步证明了所提出的分层控制方法的有效性和可行性。

本文的其余部分安排如下:在第二节中,讲述自动驾驶4WID电动汽车的横向动力学模型开发。在第三节中,提出了一种新的自适应分层控制框架,包括自适应模糊滑动控制方案和用于自动轨迹跟踪控制的伪逆控制分配方案。提出的控制框架的在严苛的操作条件下的模拟和实验结果在第四节中说明。最后,在第五节中得出结论。

未完待续……       

来源 | 同济智能汽车研究所 智能转向研究组