安信:2019自动驾驶趋势研究报告(五)

3.2.1.4 5G/ V2X技术为自动驾驶打通外部「大脑」

5G/ V2X 技术为自动驾驶打通外部「大脑」。车联网 V2X 就是把车连到网或者把车连成网,包括汽车对汽车(V2V)、汽车对基础设施(V2I)、汽车对互联网(V2N)和汽车对行人(V2P)。通过 V2X 网络,相当于自动驾驶打通外「大脑」,提供了丰富、及时的「外部信息」输入,能够有效弥补单车智能的感知盲点。可以说,V2X 是自动驾驶加速剂,能够有效补充单车智能的技术、加速反应效率。5G 网络具备低时延、高吞吐、高可靠的特性,大大提升了 V2X 传输信息的丰富性和及时性,也提高了 V2X 传感器的技术价值。


3.2.2 计算平台(主控芯片)

3.2.2.1 高等级自动驾驶的本质是AI计算问题,车载计算平台是刚需

自动驾驶就是「四个轮子上的数据中心」,车载计算平台成为刚需。随着汽车自动驾驶程度的提高,汽车自身所产生的数据量将越来越庞大。根据英特尔 CEO 测算,假设一辆自动驾驶汽车配置了 GPS、摄像头、雷达和激光雷达等传感器,则上述一辆自动驾驶汽车每天将产生约 4000GB 待处理的传感器数据。不夸张的讲,自动驾驶就是「四个轮子上的数据中心」,而如何使自动驾驶汽车能够实时处理如此海量的数据,并在提炼出的信息基础上得出合乎逻辑且形成安全驾驶行为的决策,需要强大的计算能力做支持。考虑到自动驾驶对延迟要求很高,传统的云计算面临着延迟明显、连接不稳定等问题,这意味着一个强大的车载计算平台(芯片)成为了刚需。事实上,如果我们打开现阶段展示的自动驾驶测试汽车的后备箱,会明显发现其与传统汽车的不同之处,都会装载一个「计算平台」,用于处理传感器输入的信号数据并输出决策及控制信号。


高等级自动驾驶的本质是 AI 计算问题,车载计算平台的计算力需求至少在 20T 以上。从最终实现的功能来看,计算平台在自动驾驶中主要负责解决两个主要问题:

1)处理输入的信号(雷达、激光雷达、摄像头等);

2)做出决策判断、给出控制信号:该加速还是刹车?该左转还是右转?

英伟达 CEO 黄仁勋的观点是「自动驾驶本质是 AI 计算问题,需求的计算力取决于希望实现的功能」,其认为自动驾驶汽车需要对周边的环境进行判断之后还作出决策,到底要采取什么样的行动,本质上是一个 AI 计算的问题,车上必须配备一台 AI 超级处理器,然后基于 AI 算法能够进行认知、推理以及驾驶。根据国内领先的自动驾驶芯片设计初创公司地平线的观点,要实现 L3 级的自动驾驶起码需要 20 个 teraflops(每秒万亿次浮点运算)以上的的计算力级别,而在 L4 级、L5 级,计算力的要求将继续指数级上升。

5.jpg

3.2.2.2 算法和芯片协同设计是计算平台的重要发展趋势

自动驾驶计算平台演进方向——芯片+算法协同设计。目前运用于自动驾驶的芯片架构主要有 4 种:CPU、GPU、FPGA(现场可编程门阵列)和 ASIC(专用集成电路)。从应用性能、单位功耗、性价比、成本等多维度分析,ASIC 架构具备相当优势。参考我们之前发布的行业报告《芯际争霸—人工智能芯片研发攻略》的观点,未来芯片有望迎来全新的设计模式——应用场景决定算法,算法定义芯片。如果说过去是算法根据芯片进行优化设计的时代(通用 CPU+算法),现在则是算法和芯片协同设计的时代(专用芯片 ASIC+算法),这一定程度上称得上是「AI时代的新摩尔定律」。具体而言,自动驾驶核心计算平台的研发路径将是根据应用场景需求,设计算法模型,在大数据情况下做充分验证,待模型成熟以后,再开发一个芯片架构去实现,该芯片并不是通用的处理器,而是针对应用场景,跟算法协同设计的人工智能算法芯片。根据业界预估,相比于通用的设计思路,算法定义的芯片将至少有三个数量级的效率提升。


0 个评论

要回复文章请先登录注册